Brain Dynamics of Aging: Multiscale Variability of EEG Signals at Rest and during an Auditory Oddball Task1,2,3
نویسندگان
چکیده
The present work focused on the study of fluctuations of cortical activity across time scales in young and older healthy adults. The main objective was to offer a comprehensive characterization of the changes of brain (cortical) signal variability during aging, and to make the link with known underlying structural, neurophysiological, and functional modifications, as well as aging theories. We analyzed electroencephalogram (EEG) data of young and elderly adults, which were collected at resting state and during an auditory oddball task. We used a wide battery of metrics that typically are separately applied in the literature, and we compared them with more specific ones that address their limits. Our procedure aimed to overcome some of the methodological limitations of earlier studies and verify whether previous findings can be reproduced and extended to different experimental conditions. In both rest and task conditions, our results mainly revealed that EEG signals presented systematic age-related changes that were time-scale-dependent with regard to the structure of fluctuations (complexity) but not with regard to their magnitude. Namely, compared with young adults, the cortical fluctuations of the elderly were more complex at shorter time scales, but less complex at longer scales, although always showing a lower variance. Additionally, the elderly showed signs of spatial, as well as between, experimental conditions dedifferentiation. By integrating these so far isolated findings across time scales, metrics, and conditions, the present study offers an overview of age-related changes in the fluctuation electrocortical activity while making the link with underlying brain dynamics.
منابع مشابه
Lifespan differences in nonlinear dynamics during rest and auditory oddball performance.
Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an indicator of cortical reactivity. During rest, bo...
متن کاملDoes Muscle Fatigue Alter EEG Bands of Brain Hemispheres?
Background: Muscle fatigue has been known to influence brain activity, but very little is known about how cortical centers respond to muscle fatigue.Objective: This study was conducted to investigate the effects of muscle contraction and fatigue induced by two different percents of maximal voluntary contraction (MVC) on Electroencephalography (EEG) signals.Material and Methods: In t...
متن کاملBrain Functional Connectivity Changes During Learning of Time Discrimination
The human brain is a complex system consist of connected nerve cells that adapts with and learn from the environment by changing its regional activities. Synchrony between these regional activities called functional network changes during the life, and with learning of new skills. Time perception and interval discrimination are among the most necessary skills for the human being to perceive mot...
متن کاملNoninvasive Electrical Neuroimaging of the Human Brain during Mobile Tasks including Walking and Running
Though human cognition often occurs during dynamic motor actions, most studies of human brain dynamics examine subjects in static seated or prone conditions. EEG signals have historically been considered to be too noise prone to allow recording of brain dynamics during human locomotion. Here we applied a channel-based artifact template regression procedure and a subsequent spatial filtering app...
متن کاملDepth of anesthesia estimation based on EEG signal using brain effective connectivity between frontal and temporal regions
Background: Ensuring adequate depth of anesthesia during surgery is essential for anesthesiologists to prevent the occurrence of unwanted alertness during surgery or failure to return to consciousness. Since the purpose of using anesthetics is to affect the central nervous system, brain signal processing such as electroencephalography (EEG) can be used to predict different levels of anesthesia....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2015